CRG Numerical Methods in Geosciences

The advancement of knowledge in geosciences heavily depends on modeling and computer simulation. A key to our future projections on climate change, risk analysis in natural hazards, and even process description of basic natural phenomena like cloud formation is the mathematical description of the underlying physical, chemical, and biological processes. Subsequently, the corresponding equations need to be solved by numerical methods suited for implementation on high-performance computers.

Objectives

An unsolved question in these simulations is the correct description and numerical representation of multi-scale processes. These are for example, the influence of small-scale mixing and entrainment processes of moist air at cloud boundaries on the development of the entire cloud cluster, the interaction of long tsunami waves with highly complex topography, or the trigger of large-scale wave phenomena from small-scale perturbations (the butterfly effect). One of our key objectives is therefore the development of Adaptive Multi-Scale Methods.

Team of CRG NumGeo.

In order to capture these effects, adaptive numerical methods are developed, which are capable of detecting areas needing high resolution on the fly, and adapting to these dynamical processes automatically. This automatic adaptation demands for highly accurate and robust numerical methods, which - applied to geophysical fluid dynamics problems - form the Numerical Methods for Geophysical Fluid Dynamics focus of the group’s work. Furthermore, efficient implementation of these demanding methods on high-performance computers including large numbers of processors is a must and new techniques for achieving scalability and efficiency are being developed and are the objective of Efficient Algorithms for High Performance Computing developments.

The Team

The CliSAP research group (CRG) 'Numerical Methods in Geosciences' develops new methods to improve the accuracy and reliability of simulations in oceanography, meteorology, and gaciology in an intelligent way.

Latest Research Group Publications

  • Drähne, U., Goseberg, N., Vater, S., Beisiegel, N., & Behrens, J. (2016). An Experimental and Numerical Study of Long Wave Run-Up on a Plane Beach. Journal of Marine Science and Engineering, 4(1), 1-23. doi:10.3390/jmse4010001.
  • Beisiegel, N., & Behrens, J. (2015). Quasi-nodal third-order Bernstein polynomials in a discontinuous Galerkin model for flooding and drying. Environmental Earth Sciences, 74(11), 7275-7284. doi:10.1007/s12665-015-4745-4.
  • Wilkens, N., Behrens, J., Kleiner, T., Rippin, D., Rückamp, M., & Humbert, A. (2015). Thermal structure and basal sliding parametrisation at Pine Island Glacier – a 3-D full-Stokes model study. The Cryosphere, 9, 675-690. doi:10.5194/tc-9-675-2015.
  • Vater, S., Beisiegel, N., & Behrens, J. (2015). A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: One-dimensional case. Advances in Water Resources, 85, 1-13. doi:10.1016/j.advwatres.2015.08.008.
  • Bauer, W. (2015). A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics. GEM - International Journal on Geomathematics, 1-71. doi:10.1007/s13137-015-0074-8.
    PDF